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Abstract

The aim of this study is to improve the prediction of long-1

term outcomes in patients with atrial fibrillation solely us-2

ing electrogram (EGM) features. We developed three dis-3

tinct models based on data from a cohort of N = 5614

patients, each targeting different aspects of EGM analysis:5

• Principal Component Analysis (PCA): We applied PCA6

to analyze the variances of eigenvectors projecting more7

than a fixed threshold of the overall variance (15%). To8

identify common projection axes among these eigenvec-9

tors, we employed the k-means algorithm for clustering.10

• Auto Regressive: This technique involves applying a bi-11

jective transformation to the coefficients, which are subse-12

quently used as input for various machine learning classi-13

fiers, including Random Forest or Support Vector Classi-14

fier.15

• Feature Engineering: We performed feature engineer-16

ing by extracting voltage, rate, and shape similarity met-17

rics from raw EGM (Electrogram) data.18

1. Introduction19

Prior studies [1] have sought to forecast long-term out-20

comes following atrial fibrillation (AF) ablation by incor-21

porating clinical variables, structural data, and intracardiac22

electrograms (EGM), but with only modest success. Our23

aim was to ascertain the predictive capacity of global elec-24

trogram data exclusively in AF patients, particularly with25

respect to acute and procedural success after ablation.26

2. First approach - EGM Variance through27

clustering28

2.1. Hypothesis29

We hypothesized that explainable machine learning – us-30

ing principal component analysis (PCA) combined with31

unsupervised clustering of EGM may reveal novel features32

that predict arrhythmia freedom after AF ablation.33

2.2. Method34

We studied N=561 AF patients (65.0±10.4 yrs , 27.6% fe-35

male) in whom unipolar EGM were recorded at 64-sites.36

Figure 1. Basket Sensors to collect EGM

Our goal is to uncover concealed information within the37

variance of the Electrogram (EGM), which correlates with38

the long-term outcomes of patients. Throughout the re-39

mainder of this study, we will work with a set of Xi ∈40

RN×T , where N = 64, and T denotes the number of data41

points in each time series for the i-th patient.42

Initially, we analyze the patients independently to iden-43

tify patterns (or deviations) in the variance of their data44

sets. Subsequently, by leveraging this knowledge, we seek45

linear projections that maximize (or minimize) the vari-46

ance for one group in comparison to the other.47

2.2.1. Standardizing the data and selecting48

the right frequency49

To analyze the variance within patients’ Electrogram
(EGM) data, it is essential to standardize the dataset [2].
This is achieved through the following affine transforma-
tion:

X̃ =
X − E

[
X
]

σX

Once this standardization is completed, we observed50

that the sampling frequency significantly influences the51

analysis. We aimed to strike a balance between a high52

frequency (resulting in a large volume of data) and a low53

Computing in Cardiology 2023; Vol 50 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2023.073



frequency (resulting in a smaller volume of data). Con-54

sequently, for the remainder of our work, we opted for a55

frequency of 400 Hz, which represents a favorable com-56

promise.57

2.2.2. Singular Value Decomposition and58

Variance Selection59

Various methods have been developed for studying dataset
variance, with PCA [3] standing out as particularly effi-
cient. Therefore, we decided to leverage the mathematical
principles of PCA to serve our specific objectives. Our
work commences with a Singular Value Decomposition
(SVD) on the dataset:

X = USV T

where UTU = IN , V TV = IT , S ≥ 0, and X ∈60

RN×T .61

By definition, the columns of U are the output eigenvec-62

tors, and the columns of V are the input eigenvectors, with63

Si,i as the corresponding singular values.64

In our specific case, we have N = 64 and T = 400×5865

(a frequency of 400 Hz for 58 seconds). Since our interest66

lies in forecasting the output, we will focus exclusively on67

the output eigenvectors, which are represented by U .68

To identify significant eigenvectors, we examine the69

variance of the i-th eigenvector of U , denoted as Σi,i, and70

select only those with a substantial variance exceeding a71

threshold of 15% of the total variance:72

J(X) = {i ∈ N |Σi,i > 0.15V }

where V =
∑

j Σj,j represents the total variance.73

Finally, for a patient with EGM X , we define the set of74

eigenvectors with significant explanatory power as:75

Eig(X) = {Ui | i ∈ J(X)}

Each Ui represents an axis of projection where the vari-
ance along it is Σi,i. For instance, if we have:

X =


x1

x2

...
xN

 Ui =


u1,i

u2,i

...
uN,i


Then the linear projection along the axis Ui is given by:76

UT
i X =

N∑
j=1

uj,ixj

Here, xj represents an EGM time series, and by per-77

forming this linear combination using Ui, we create a new78

representation that captures strong explanatory power in79

terms of variance.80

2.2.3. K-means Algorithm for the Eigenvec-81

tors82

After computing Eig(X) for each patient, we aggregate
all the eigenvectors into two primary sets: KRecurrence and
KNon Recurrence.

KRecurrence =
⋃

X patients recurrence

Eig(X)

KNon Recurrence =
⋃

X patients non recurrence

Eig(X)

The subsequent step is quite intuitive: we aim to identify83

common directions within each set to distinguish projected84

variance based on group characteristics.85

Given that we are working in high dimensions (N =86

64), we sought an effective algorithm that converges87

quickly. The widely recognized K-means algorithm [4]88

emerged as a robust method for this purpose:89

Algorithm 1 k-means
1: procedure KMEANS((x⃗1, ..., x⃗N ),K)
2: (s⃗1, ..., s⃗K)← SelectRandom((x⃗1, ..., x⃗N ),K)
3: for k ← 1 to K
4: do µ⃗k ← s⃗k
5: while stopping criterion has not been met do for

k ← 1 to K
6: for n← 1 to K
7: do j ← argmin∥µ⃗i − x⃗n∥
8: wj ← wj ∪ {x⃗n}
9: for k ← 1 to K do
10: µ⃗k ← 1

|wk|
∑

x⃗∈ωk
x⃗

11:
12: return {µ⃗1, ..., µ⃗K}
13:

2.2.4. Centroid Selection for Discrimination90

After applying the K-means algorithm to the two data sets,91

KRecurrence and KNon Recurrence, we obtain two sets of cen-92

troids: CRecurrence and CNon Recurrence. These sets contain the93

common axes of projection for the two categories.94

To determine which centroids discriminate the most
from the others, we define a loss function for a given di-
rection µ as follows:

L(µ,X) = E
[
µT XXT µ

]
+ 2 V

[
µT XXT µ

]
This function was designed to weigh both the expected
value of the projected variance and the standard variation
of it, with weights ( 13 ,

2
3 ). Therefore, for a centroid µ ∈ C,

we aim to maximize or minimize the following quantity:

L(µ) = L(µ,XRecurrence)− L(µ,XNon Recurrence)

Using the training sets CTRAIN Recurrence and CTRAIN Non Recurrence,
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we define the Monte Carlo estimator

L̂(µ) = L̂(µ,XRecurrence)− L̂(µ,XNon Recurrence)

with95

L̂(µ,XR) =
1

m

∑
XR

µTXXTµ+
2

m− 1

∑
XR

(
µTXXTµ−Xn

)2

Following this procedure, we select the two centroids that
maximize and minimize L:

µRecurrence = argmax
µ∈CTRAIN Recurrence

L(µ)

µNon Recurrence = argmin
µ∈CTRAIN Non Recurrence

L(µ)

Finally, we construct two directions where the projected96

variance should be maximal (resp. minimal) for the Re-97

currence Group vs. the Non Recurrent one.98

2.3. First Results99

A total of N = 390 patients experienced freedom from100

arrhythmia (AF and AT) for less than one year after the101

blanking period, constituting the ”Freedom” group. Addi-102

tionally, N = 171 patients had a recurrence, forming the103

”Recurrence” group.104

We then computed and plotted the projected variance105

from Principal Component Analysis (PCA) of AF EGM in106

both the recurrence and freedom groups. This analysis al-107

lows us to evaluate the discriminatory power of one group108

versus the other.109

When examining the projected variance for the ”Free-110

dom” group (see Figure 2), we observe that it serves as111

an effective means of classifying patients based on their112

labels. Notably, the variance was higher in the ”Recur-113

rence” group compared to the ”Freedom” group (µ =114

37.1%±21.3% vs. µ = 29.5%±15.9% of the global vari-115

ance, median p-value = 0.21 for the Kolmogorov-Smirnov116

test) when considering the average distribution across 50117

independent training/testing iterations.118

Figure 2. Proportion of the projected variance for an
eigenvector of the Recurrence group

The analysis of the projected variance distribution re-119

vealed the presence of small clusters among patients in the120

”Recurrence” and ”Freedom” groups. These clusters rep-121

resent potential patterns that can be leveraged as relevant122

inputs for a neural network aimed at predicting a patient’s123

state.124

2.4. Conclusion for Variance Clustering125

In summary, the application of PCA and unsupervised ma-126

chine learning techniques provided valuable insights into127

the characteristics that can predict outcomes following AF128

ablation. These methods shed light on how Electrogram129

(EGM) data carry patient-specific information.130

However, it’s important to note that the projected vari-131

ance along eigenvectors, while informative, may not pro-132

vide a robust and efficient means of forecasting recurrence133

one year post-ablation. As a next step, we propose the134

exploration of more elaborate non-linear classifiers, cou-135

pled with feature engineering, to enhance the accuracy of136

long-term outcome predictions. Specifically, we intend to137

investigate Auto-Regressive models in combination with138

complex classifiers.139

This path represents a promising direction for further140

research and may offer more accurate forecasts of patient141

outcomes following AF ablation.142

3. A More Standard Approach - ML143

Classifier144

3.1. Hypothesis145

Our hypothesis is that employing explainable machine146

learning, using standard classifiers combined with auto-147

regressive models and handcrafted features extracted from148

EGM data, can provide additional information to comple-149

ment PCA-based predictions, enhancing the ability to pre-150

dict arrhythmia freedom following AF ablation.151

3.2. General Classifiers152

A variety of classifier types can be employed for this type153

of feature set, including ensemble learning methods, lin-154

ear classifications, binary classifications, and more. We155

have explored multiple classifier types, including Random156

Forest, Support Vector Machine (SVM), Adaboost, Naive157

Bayes, and Logistic Regression. Among these, we aim to158

identify the most robust classifier based on the Area Under159

the Curve (AUC) score metric.160

3.3. Method161

Utilizing the same dataset (with N = 561 patients), we162

aim to construct a robust classifier capable of predicting163

long-term outcomes using auto regressive models. Al-164

though the majority of patients have EGM data from the165

left atrium (NLA = 517), there are NRA = 39 patients166

with EGM data exclusively from the right atrium. To ac-167

count for this variation, we introduce an additional categor-168

ical column to the 64 × (α1, α2, σ
2) dataset, with values169
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in {0, 1} indicating the atrium area from which the EGM170

data originate.171

With our dataset prepared and classifier models selected,172

we proceed to determine the optimal set of hyperparame-173

ters for each model. This is achieved through a Grid Search174

Cross-Validation approach, which combines grid search175

with cross-validation to ensure robust hyperparameter se-176

lection.177

Figure 3. Grid Search Representation in a 2D space

3.4. Results178

The initial phase involves the selection of the ”best” model,179

based solely on the training set. To determine the relative180

robustness of one classifier over another, we implement a181

training-validation strategy utilizing the first training set.182

The results, in terms of the Area Under the Curve (AUC)183

metric for hyperparameters fitted using a grid search cross-184

validation approach, are presented in Figure 4.185

Figure 4. Comparison of the different classifiers in term
of AUC-metric

Following the results presented in Figure 4, it is evident186

that the Random Forest Algorithm emerges as the most ro-187

bust classifier among the five considered, yielding an aver-188

age Area Under the Curve (AUC) of AUCaverage = 66.8%.189

Surprisingly, the Support Vector Machine Classifier, a rel-190

atively simple linear classifier, ranks second in terms of191

AUC, nearly matching the performance of the Naive Bayes192

classifier.193

However, it is noteworthy that even with the Random194

Forest being the best-performing classifier, the AUC re-195

mains relatively low and falls short of our initial expecta-196

tions based on the hypothesis.197

With the training set learned, we proceed to calculate198

the results for the Holdout set with all classifiers, even199

though we have already chosen the Random Forest as our200

preferred classifier.201

AR Scores for Long Term Outcomes (1y)
Classifier RF SVC NB Boost LR
AUC 0.71 0.63 0.55 0.62 0.53

Feature Engineering
AUC 0.72 0.6 0.49 0.33 0.51

Figure 5. Holdout results in term of AUC-metric

An Area Under the Curve (AUC) of 0.71 achieved by202

the Random Forest classifier indicates that the model has203

indeed captured characteristic information within the Elec-204

trogram (EGM) data. However, it falls short of achieving205

perfect classification of patients with recurrence.206

3.5. Conclusion207

In conclusion, our exhaustive analysis of electrogram data208

in patients with atrial fibrillation (AF) provides limited pre-209

dictive value for outcomes following AF ablation. The210

application of PCA-Clustering and AR-Classifier revealed211

features that could predict AF ablation outcomes with only212

modest success. This study sets a certain ceiling for elec-213

trographic predictors, suggesting that either sophisticated214

feature engineering or the incorporation of alternative data215

sources is necessary to improve prediction.216
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